基于一种新型抽运耦合技术的光纤激光放大器

赵保银1,2 段开椋1 赵 卫1 张恩涛1 惠祥云1,2

(¹中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西西安 710119)
²中国科学院研究生院,北京 100049

摘要 通过建立耦合模方程,对一种同时包含传输芯和增益芯的复合结构光纤中的模场耦合特性进行了理论分析,同时使用速率方程和热传导方程对基于这种复合结构光纤的激光放大器的增益特性和热分布进行了数值计算和分析。研究结果表明,复合结构光纤中抽运光的耦合特性与抽运光的模式、纤芯半径和纤芯距离等因素有关;与端面抽运光纤激光放大器相比,这种复合结构光纤放大器对抽运光的吸收和激光转换相对平缓,光纤具有相对低的温度分布。因此,基于这种复合结构光纤的新型抽运技术可以解决使用端面抽运技术进行抽运时增益光纤温度 过高的问题。这种复合结构光纤用于研制大功率光纤激光(放大)器有很大的优越性,为研制超大功率光纤激光 (放大)器提供了一种新的途径。

关键词 激光器;光纤激光放大器;端面抽运;复合结构光纤;耦合周期;耦合模方程 中图分类号 TN242;TN248.1 **文献标识码** A **doi**: 10.3788/CJL201138.0702014

High-Power Fiber Laser Amplifiers Based on a New Pump-Coupling Technology

Zhao Baoyin^{1,2} Duan Kailiang¹ Zhao Wei¹ Zhang Entao¹ Hui Xiangyun^{1,2}

 $(^1\,State\,Key\,Laboratory\,of\,Transient\,Optics$ and Photonics , $Xi'an\,Institute\,of\,Optics$ and

 $Precision\ Mechanics\ ,\ Chinese\ Academy\ of\ Sciences\ ,\ Xi'an\ ,\ Shaanxi\ 710119\ ,\ China$

² Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract By constructing the coupled-mode equations, the mode-coupling characteristics between the passive and active cores within a kind of composite structural fiber (CSF) are studied theoretically. By using the steady-state rate equations and the heat conductive equations, the gain characteristics and the temperature distribution of all-fiber laser amplifiers based on CSF are calculated and analyzed numerically. The results show that the mode-coupling characteristics depend on the coupled modes, the radius and the separation of the two cores of the CSF. Compared with the end-pumped fiber laser amplifiers, the amplifiers based on CSF have a slow pump light absorption and conversion, and thus, have low temperature distribution. This kind of new coupling-pump technology by using CSF is of apparent advantages. It can be used to solve the problem of high temperature of end-pumped fiber amplifiers, and thereby provides a new approach to design higher power fiber lasers and fiber amplifiers.

Key words lasers; fiber laser amplifier; end pump; composite structural fiber; coupling distance; coupled-mode equations

OCIS codes 060.2310; 060.2280; 140.3280

1 引 言

大功率光纤激光器具有结构紧凑、性能稳定、转

换效率高和输出光束质量好等优点,因而在材料加 工、激光打标、生物医学、空间通信和国防安全等领

收稿日期: 2010-12-07; 收到修改稿日期: 2011-02-28

基金项目:中国科学院"西部之光""联合学者"项目(0729591213)资助课题。

作者简介:赵保银(1974—),男,博士研究生,主要从事大功率全光纤激光技术方面的研究。

E-mail: joseph.zhao@opt.ac.cn

导师简介:段开椋(1967—),男,副研究员,博士生导师,主要从事高功率激光技术方面的研究。 E-mail: kl. duan@163. com(通信联系人) 域具有广泛的应用^[1~4]。近几年来,随着双包层光 纤等大功率光纤器件的研制和高功率激光二极管抽 运技术的成熟,光纤激光器的输出功率水平得到了 很大提升。2004年 Jeong 等^[2]报道了 1.36 kW 功 率输出的掺镱大芯径光纤激光器。2005年, IPG Photonics公司的掺镱光纤激光器实现 2 kW 高光 束质量激光输出^[5]。2009年,该公司又成功研制一 种单模激光器,其单光纤输出能力达到 9.6 kW^[6], 是目前国际上光纤激光器输出功率的最高水平。

然而,光纤激光器输出功率的提高需要为增益 光纤提供更大的抽运功率,这就对抽运技术提出了 更高要求。目前,端面抽运技术是一种被广泛使用 的较为成熟的抽运技术,它是将多模抽运光从增益 光纤端面直接耦合进入光纤[1,7~9]。由于量子亏损 和耦合损失等原因,在大功率抽运情况下这种端面 抽运技术会使增益光纤的抽运端有非常高的温度分 布,严重影响了激光器的运行安全,同时也限制了光 纤激光功率的进一步提高^[10~12]。有文献提出利用 分段抽运的方法来解决这一问题[11],但随着抽运光 功率的增加,需要增加增益光纤长度和分段数,使得 激光器结构变得较为复杂,而且由于光纤熔点数目 的增加,使激光器系统的累计熔接损耗增大,这也降 低了激光器的效率和可靠性。因此,探索适于较大 功率水平的抽运技术,仍是大功率全光纤激光技术 需要重点解决的技术问题。

本文提出一种新型的光纤抽运耦合技术。该技 术使用一种复合结构的光纤(CSF)^[13~15],这种光纤 包含一对平行排列的"芯",其中的一个为抽运芯,用 于传输抽运光,另一个为掺杂稀土离子的增益芯,成 一对芯共用一个包层。在抽运光的传输过程中,由 于倏逝波的泄露,抽运芯中的抽运光逐渐耦合到增 益芯中,这样就避免了使用端面抽运技术时抽运点 光能量过于集中的问题,能有效地降低增益光纤的 热分布。在对这种复合结构光纤的模场耦合特性进 行理论分析时,结合光纤激光放大器的速率方程和 热传导方程,对基于这种复合结构光纤的激光放大 器的增益放大特性和光纤的热分布进行了数值模拟 和分析。

2 理论模型

2.1 抽运芯和增益芯之间的耦合模方程

图 1 描述了复合结构光纤的结构以及基于这种 光纤的激光放大器原理。PC 和 GC 分别为抽运芯 和增益芯,半径分别为 ρ₁ 和 ρ₂,折射率分别为 n₁ 和 n_2 ,中心相距 $d(d > \rho_1 + \rho_2)$ 。PC和GC处于一个包 层之中,包层半径为b,折射率为 n_0 。若d足够小,两 芯中的模场会有较强的倏逝波耦合,可使PC中传 输的抽运光在传输过程中逐渐耦合到GC中。GC 中心存在半径为 $r \leq \rho_3(\rho_3 < \rho_1, \rho_2)$ 的掺有稀土离子 的增益区。从PC耦合到GC中的抽运光会被稀土 离子逐步吸收,并转换为波长更长的激光,从而实现 信号激光的放大。

图 1 基于复合结构光纤的激光放大器原理 Fig. 1 Schematic principle of the laser amplifier based on CSF

复合结构光纤中的光波场满足微分方程[16]

$$\nabla^2 \boldsymbol{\Psi} + \frac{\partial^2 \boldsymbol{\Psi}}{\partial z^2} + k_0^2 n^2 (\boldsymbol{r}, \theta) \boldsymbol{\Psi} = 0, \qquad (1)$$

式中 $n(r,\theta)$ 为复合结构光纤的折射率。 $\Psi(r,\theta,z)$ 可用 PC 和 GC 中的光波场表示为

 $Ψ(r,θ,z) = a(z)E_1(r,θ) + b(z)E_2(r,θ), (2)$ 式中 $E_1(r,θ)$ 和 $E_2(r,θ)$ 分别为 PC 和 GC 中的归一 化模场分布函数,a(z) 和 b(z) 为复振幅。由于抽运 光在 GC 中传输时不断被吸收并转换为激光,因此 GC 中抽运光是不断衰减的,设其振幅衰减因子为 exp(-gz),g为吸收系数。在实际中 $g \ll k_0, g/k_0 \sim$ 10^{-6} ,为研究问题方便,可将 GC 视为折射率为 n_2 的均匀介质光纤,在描述 GC 中抽运光的模场分布 时不考虑系数 g 引起的横向模场分布变化^[17]。 $E_1(r,θ)$ 和 $E_2(r,θ)$ 分别满足微分方程

 $\nabla^2 E_1 + \left[k_0^2 n_1^2(r,\theta) - \beta_1^2\right] E_1 = 0, \qquad (3a)$

 $∇^{2}E_{2} + [k_{0}^{2}n_{2}^{2}(r,\theta) - (\beta_{2} - ig)^{2}]E_{2} = 0.(3b)$ 将(2)式代入(1)式并利用(3)式化简,可得到模场复 振幅 a(z)和 b(z)满足的耦合模方程组

$$\frac{\partial a(z)}{\partial z} = -\operatorname{i}(K_{11} + \beta_1)a(z) - \operatorname{i}K_{12}b(z), \quad (4a)$$

$$\frac{\partial b(z)}{\partial z} = -\operatorname{i}K_{21}a(z) - \operatorname{i}(K_{22} + \beta_2 - \operatorname{i}g)b(z), \quad (4b)$$

式中 β_1 和 β_2 为模传播常数, K_{11} , K_{22} 为自耦合系数, K_{12} , K_{21} 为互耦合系数,表示为

$$K_{ij} = \frac{2\pi^2 \left[n_{(3-j)}^2 - n_0^2 \right] \iint\limits_{S_{(3-j)}} E_i^* E_j r \, \mathrm{d}r \, \mathrm{d}\theta}{\lambda^2 \beta_i \iint\limits_{E_i^*} E_i r \, \mathrm{d}r \, \mathrm{d}\theta}, \quad (5)$$

式中 *i*, *j* = 1,2,积分区域 S_1 为 PC 区域, S_2 为 GC 区域。利用(4)式可以分析图 1 所示的复合结构光 纤中 PC 和 GC 之间的模场耦合情况。若吸收系数 *g* 不随耦合长度 *z* 变化,利用边界条件 $a(0) = A_0$, b(0) = 0,可得(4)式的解析解为

$$a(z) = \frac{A_0}{2p} \{ p [1 + \exp(pz)] \} +$$

is $[1 - \exp(pz)] \} \exp\left[-\frac{1}{2}(p + iq)z\right],$ (6a)

$$b(z) = \frac{\mathrm{i}k_{21}A_0}{p} [1 - \exp(pz)] \exp\left[-\frac{1}{2}(p + \mathrm{i}q)z\right],$$
(6b)

式中

$$s = k_{11} - k_{22} + \beta_1 - (\beta_2 - ig), \qquad (7)$$

$$p = (-4k_{12}k_{21} - s^2)^{1/2}, \qquad (8)$$

$$q = k_{11} + k_{22} + \beta_1 + (\beta_2 - 1g).$$
 (9)
由(6b)式可得 | $b(z)$ |² = 2 $(k_{21}A_0 / | p |)^2$ (1 - $\cos \theta$) exp($-gz$), $\theta = | p | z$,即当两光纤存在耦合
时,GC 中抽运光功率衰减因子为 exp($-gz$),PC 和
GC 中抽运光功率耦合的周期长度 $L_T = 2\pi / |p|^{[18]}$ 。
特殊地,若 $g = 0$, $\rho_1 = \rho_2$, $n_1 = n_2$,而且 $\beta_1 = \beta_2$,
 $k_{11} = k_{22}$, $k_{21} = k_{12}$,由(7) ~ (9) 式得 $s = 0$, $p = 2ik_{12}$, $q = 2(k_{11} + \beta_1)$,(6)式化简为

$$a(z) = A_0 \cos(k_{12}z) \exp[-i(k_{11} + \beta_1)z], (10a)$$

$$b(z) = -iA_0 \sin(k_{12}z) \exp[-i(k_{11} + \beta_1)z], (10b)$$

(10)式即为 GC 不存在吸收,即与 PC 完全相同时,相同模场的耦合结果,这与文献[18]中的结果是一致的。

2.2 复合结构光纤激光放大器的速率方程

为研究图 1 所示光纤激光放大器的增益特性, 假定 GC 中心掺杂 Yb³⁺。在强抽运条件下,假设抽 运光和激光分别为单一波长,忽略自发辐射,并考虑 激光和抽运光的散射损耗,放大器的稳态速率方程 表示为^[19]

$$\frac{\frac{N_{2}(z)}{N}}{N} = \frac{\frac{P_{p}(z)\lambda_{p}\sigma_{ap}\Gamma_{p}}{hcA} + \frac{P_{s}(z)\lambda_{s}\sigma_{as}\Gamma_{s}}{hcA}}{\frac{P_{p}(z)(\sigma_{ap} + \sigma_{ep})\lambda_{p}\Gamma_{p}}{hcA} + \frac{1}{\tau} + \frac{P_{s}(z)(\sigma_{as} + \sigma_{es})\lambda_{s}\Gamma_{s}}{hcA}},$$
(11a)

$$\frac{\mathrm{d}P_{\mathrm{p}}(z)}{\mathrm{d}z} = -\Gamma_{\mathrm{p}} \big[\sigma_{\mathrm{ap}} N - (\sigma_{\mathrm{ap}} + \sigma_{\mathrm{ep}}) N_{2}(z) \big] \times P_{\mathrm{p}}(z) - \alpha_{\mathrm{p}} P_{\mathrm{p}}(z), \qquad (11b)$$
$$\frac{\mathrm{d}P_{\mathrm{s}}(z)}{\mathrm{d}z} = \Gamma_{\mathrm{s}} \big[(\sigma_{\mathrm{es}} + \sigma_{\mathrm{as}}) N_{2}(z) - \sigma_{\mathrm{as}} N \big] \times$$

$$P_{s}(z) - \alpha_{s} P_{s}(z), \qquad (11c)$$

式中 $N_2(z)$ 为 Yb³⁺ 粒子在增益光纤 z 处的上能级 粒子数密度,N 为掺杂浓度, λ_p 和 λ_s 分别为抽运光 和激光波长, Γ_p 和 Γ_s 分别为抽运光和激光功率填充 因子, σ_{ap} , σ_{ep} 和 σ_{as} , σ_{es} 分别为抽运光和激光的吸收、 发射截面, τ 为上能级电子寿命, $A = \pi \rho_s^2$ 为 GC 芯 中增益区截面积,h 为普朗克常数,c 为真空中光速, α_p 和 α_s 分别为抽运光和激光的损耗因子, P_p 和 P_s 分别为 GC 中的抽运光和激光功率。其中抽运光功 率

$$P_{\rm p} = P_{\rm b} = \frac{\varepsilon_0 c n_2 |b(z)|^2}{2} \int_{0}^{2\pi\infty} E_2^* (r,\theta) E_2(r,\theta) dr d\theta.$$
(12)

$$g = \frac{\Gamma_{\rm p} \left[\sigma_{\rm ap} N - (\sigma_{\rm ap} + \sigma_{\rm ep}) N_2(z)\right] + \alpha_{\rm p}}{2}, \quad (13)$$

利用(4),(11)~(13)式可以数值分析激光放大器的 抽运光耦合、吸收和信号激光增益放大特性。

2.3 复合结构光纤激光放大器的热传导方程

引入热传导方程,对图 1 所示的光纤激光放大器的热分布进行分析。复合结构光纤中的热主要产 生于 GC 中的增益区对抽运光的吸收和激光转换过 程中的量子亏损以及激光在纤芯中的传输损耗,光 纤中的热源函数可表示为^[20]

$$Q(z) = \frac{\alpha_{\rm a} \eta_{\rm q} P_{\rm p}(z) + \alpha_{\rm s} P_{\rm s}(z)}{\pi \rho_{\rm s}^2}, \qquad (14)$$

式中,参数 $\alpha_a = 2g$, η_q 为与量子亏损有关的热转换 系数。纤芯增益区产生的热由内而外传向光纤表 面,再经辐射和对流散失到空气中。由于复合光纤 包层半径 b 远大于 PC 和 GC 芯径 ρ_1 和 ρ_2 ,因此可 以假定纤芯 GC 位于复合光纤的中心。稳态热传导 方程表示为^[20,21]

$$\frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial T(r,z)}{\partial r} \right] + \frac{\partial^2 T(r,z)}{\partial z^2} = -\frac{Q(z)}{\kappa},$$

(0 \le r \le \rho_3), (15a)
$$\frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial T(r,z)}{\partial r} \right] = 0, (\rho_3 \leqslant r \leqslant b), (15b)$$

式中 κ 为光纤的热传导系数。使用温度T(r,z)沿光 纤轴向的慢变近似 $\partial^2 T(r,z)/\partial z^2 = 0$,并根据温度 在边界r = 0和 $r = \rho_3$ 处的连续性条件,得到纤芯 温度

$$T_{0}(z) = T_{b}(z) + \frac{Q(z)\rho_{3}^{2}}{4\kappa} + \frac{Q(z)\rho_{3}^{2}}{2\kappa} \ln \frac{b}{\rho_{3}},$$
(16)

式中 T_b(z) 为光纤表面温度。根据牛顿冷却定律 可知[21]

$$T_{\rm b}(z) = T_{\rm c} + \frac{Q(z)\rho_3^2}{2bh_{\rm c}},$$
 (17)

式中T。为空气温度,h。为空气的热对流系数。将热 源函数(14)、(17)式代入(16)式可得

$$T_{0}(z) = T_{c} + \frac{2g\eta_{q}P_{p}(z) + \alpha_{s}P_{s}(z)}{\pi} \times \left(\frac{1}{2bh_{c}} + \frac{1}{4\kappa} + \frac{1}{2\kappa}\ln\frac{b}{\rho_{3}}\right).$$
(18)

这样,联立(4),(11)~(13)式和(18)式进行数值计 算,可得到复合光纤的 GC 中心温度 $T_0(z)$ 。在数 值计算时,需要将 GC 分为许多小段。在分段长度 足够小时,该小段内的吸收系数g可视为常数。每 一小段内的数值计算分为两步:第一步根据(11)、 (12)和(13)式得到 GC 芯中的抽运功率 P_b、激光功 率 P_s 和吸收系数 g_s 并将 P_b 、 P_s 和 g 代入(18)式解 得 GC 中心温度 T_{0} ;第二步将系数 g 值代入(4)式 计算出 PC 和 GC 纤芯中的抽运光耦合、吸收后的 复振幅。重复这两步计算,可以得到复合光纤 GC 中抽运光、激光功率和中心温度随光纤长度的变化 曲线。

数值计算与结果分析 3

首先研究复合结构光纤的模场耦合特性。为简 单起见,仅以 LP01, LP02及 LP03 三个低阶模为例分 析 PC 和 GC 中相同模式耦合时的抽运光演变情 况。基本计算参数取值为:抽运光波长 λ_0 = 0.975 μm,激光波长 λ_s=1.08 μm, PC 和 GC 半径 $\rho_1 = \rho_2 = \rho$,折射率 $n_1 = n_2 = 1.452$,复合光纤包层 半径 $b = 200 \ \mu m$, 折射率 $n_0 = 1.456$, GC 芯中增益 区半径 $\rho_3 = 5 \ \mu m_o$ 速率方程(11)式和纤芯温度 (18)式中各参数如表1所示^[19,22]。

图 2 为耦合周期 L_T 随归一化间距 d/p 的变化 曲线, $\rho=15 \mu m$,吸收系数 g=0.05。从图 2 可以看 出,对于同一个模, $L_{\rm T}$ 随纤芯距 d/ρ 的增大而迅速 增大。对于相同的归一化间距 d/ρ , LP₀₁, LP₀₂ 和 LP03模的耦合周期 LT 依次减小,即低阶模的耦合 周期大于高阶模的耦合周期,如当 $d/\rho = 2.5$ 时, LP01, LP02和 LP03模的耦合周期分别为 28.3,5.3和 1.3 m.

表1 速率方程(11)式和纤芯温度(8)式使用的参数值

Table 1 Parameters used in the equations (11) and (8)

Parameter	Value
τ /s	1×10^{-3}
$\sigma_{ m ap}/{ m m}^2$	2.5 $\times 10^{-24}$
$\sigma_{ m ep}/{ m m}^2$	2.5 $\times 10^{-24}$
$\sigma_{ m es}/{ m m}^2$	2.0×10 ⁻²⁵
$\sigma_{ m as}/ m m^2$	1.4 $\times 10^{-27}$
$N \ /\mathrm{m}^{-3}$	4×10^{25}
$lpha_{ m p}/{ m m}^{-1}$	5×10^{-3}
$lpha_{ m s}/{ m m}^{-1}$	3×10^{-3}
$\Gamma_{ m p}$	0.0012
$\Gamma_{ m s}$	0.82
L/m	50
$P_{\mathrm{a}}(\mathrm{O})$ /W	3000
$P_{ m b}$ (O) /W	0
$P_{ m s}(0)$ /W	500
$\eta_{ ext{q}}$	0.11
$\kappa / [W/(m \cdot K)]$	1.38
$T_{ m c}/{ m K}$	298
$h_{\rm c}/[{ m W}/({ m m}^2 \cdot { m K})]$	30
$ \begin{array}{c} 50 \\ 40 \\ - LP_{01} \\ - LP_{02} \\ - LP_{03}^{02} $	

图 2 耦合周期 L_T 随光纤归一化间距 d/ρ 的 变化(g=0.05, ρ =15 μ m)

 d/ρ

Fig. 2 Coupling periods L_T of different LP modes versus the normalized core separation d/ρ (g=0.05, ρ = 15 µm)

图 3 是归一化间距 $d/\rho=2.5$ 时,耦合周期 L_{T} 随纤芯半径 ρ 的变化曲线,系数 g=0.05。选取纤 芯半径的变化范围为 12 μm ≤ ρ ≤ 22 μm, 由图 3 可 以看出, LP01、LP02和 LP03模的耦合周期 LT 均随芯 径 o 的增大而迅速增大。与图 2 类似,低阶模的耦 合周期大于高阶模的耦合周期,对于相同的 ρ , LP01, LP02和 LP03模的耦合周期 LT 依次减小。由 图 2,3 的结果可知,为保证复合结构光纤对低阶模 抽运光也有一定的吸收效率,必须根据纤芯 o 的大 小选择适当的归一化纤芯距离 d/ρ 。

图 4 分析了复合结构光纤激光放大器在不同模 式抽运光耦合时的增益特性,为便于分析,假设从

PC 注入了功率为 1000 W、模式分别为 LP01、LP02 或 LP₀₃的抽运光,初始信号激光功率为 P₆(0) = 500 W。GC 中抽运功率 P_b 和激光功率 P_s 随传输

距离 z 的变化做了数值计算,结果分别示于图 4(a) 和(b),计算时取参数 $\rho=15 \mu m, d/\rho=2.5$ 。为与端 面抽运技术相比较,也给出了使用端面抽运技术将 抽运光直接导入单根 GC 时的计算结果,如图 4 中 的小黑点线所示。由图 4(a)可以看出,GC 中不同 模式的抽运光是振荡衰减的,LP01、LP02和 LP03模 的振荡周期分别与其耦合周期(见图 2,图 3)一致; 而使用端面抽运技术时,抽运光单调衰减,其衰减速 度较快。从图 4(b)可以看出,使用 LP₀₁模抽运时, 激光功率增益放大过程中的波动较大,使用 LP02 和 LP03模抽运时,激光功率增益放大过程中的波动较 小。但在整个光纤长度内,使用 LP01、LP02 和 LP03 模耦合抽运均能获得比使用端面抽运技术更为平缓 的激光放大,这将有利于改善光纤放大器的温度分 布特性。

图 4 GC 中抽运功率 $P_b(a)$ 和激光功率 $P_s(b)$ 随传输距离 z 的变化($\rho=15 \mu m, d/\rho=2.5$)

下面讨论图1所示的复合结构光纤放大器的增 益放大及热分布特性。在实际使用中抽运光为多模 激光,因此不失一般性,设多模抽运光总功率为 $P_{a}(0) = 3000$ W,且总功率平均分配在 LP₀₁、LP₀₂和 LP03 三个模上,即 LP01、LP02 和 LP03 模功率分别为 1000 W。在此前提下,图 5(a)和(b)分别对抽运光

Fig. 4 Pump power $P_{\rm b}(a)$ and output power $P_{\rm s}(b)$ in GC versus the coupling distance z ($\rho=15 \ \mu{\rm m}, \ d/\rho=2.5$) 转换效率 $\eta_{p} = [P_{s}(z) - P_{s}(0)]/P_{a}(0)$ 和纤芯温度 T_0 随传输距离 z 的变化做了数值计算,半径 $\rho =$ 15 µm。图中同时给出了使用单端抽运技术将抽运 光直接导入单根 GC 时的计算结果,用小黑点线表 示。由图 5(a)可知,与端面抽运技术相比较,使用 复合结构光纤抽运技术时抽运光的转换效率较为平

图 5 抽运光吸收率 $\eta_{0}(a)$ 和复合光纤纤芯温度 $T_{0}(b)$ 随传输距离 z 的变化($\rho=15 \mu m$) Fig. 5 Absorption $\eta_{\rm p}$ of pump power (a) and core temperature T_0 of the CSF (b) versus the coupling distance z (ρ =15 μ m)

缓,如当 $d=2.6\rho$ 时,复合结构光纤在 z=25,50 m 处的转换效率分别为 $\eta_{\rho}=56.1\%,81.4\%$,而使用 端面抽运技术时在 z=25,50 m 处 $\eta_{\rho}=85.2\%$, 89.8%。当归一化间距增加时,复合结构光纤抽运 技术时抽运光的转换效率更加平缓,如 $d=2.7\rho$ 时, 在 z=50 m 处的转换效率只有61.2%。抽运光相 对平缓的转换效率可有效改善放大器的热分布,这 可由图 5(b)看出。使用复合结构光纤抽运技术时, 光纤起始端 z=0 处的纤芯温度仅为室温 25.4 ℃。 纤芯温度 T_0 随 z 波动变化,在 PC 和 GC 纤芯距 $d=2.6\rho, 2.7\rho$ 时纤芯的最高温度分别为 507 ℃ 和 340 ℃。而使用端面抽运技术时,起始端 z=0 处的 纤芯温度高达 907 ℃。

4 结 论

对基于一种复合结构光纤的新型光纤激光放大器的抽运耦合特性、增益放大特性以及热分布特性等进行了全面的理论分析。这种新型抽运耦合技术的光纤激光放大器的抽运耦合是通过复合结构光纤中传输芯和增益芯的倏逝波泄露实现的。与端面抽运光纤激光放大器相比,使用这种新型抽运耦合技术的光纤激光放大器相比,使用这种新型抽运耦合技术的光纤激光放大器的抽运光吸收和信号激光增益放大都较为平缓,而且其平缓程度还可通过改变两纤芯间的距离、纤芯半径等参数进行调节。因此基于这种复合结构光纤的新型抽运技术可以解决使用端面抽运技术进行抽运时增益光纤温度过高的难题。研究结果对设计超大功率的光纤激光器和激光放大器有一定的理论指导意义。

参考文献

- 1 Yin Shuping, Yan Ping, Gong Mali. End-pumped 300 W continuous-wave ytterbium-doped all-fiber laser with master oscillator multistage power amplifibers configuration [J]. Opt. Express, 2008, 16(22): 17864~17869
- 2 Y. Jeong, J. K. Sahu, D. N. Payne *et al.*. Yterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Opt. Express, 12(25): 6088~6092
- 3 Xiao Rui, Hou Jing, Jiang Zongfu. Experimental investigation of phase detection and compensation in coherent combining of fiber laser array[J]. Acta Physica Sinica, 2006, 55(1): 184~187 肖 瑞,侯 静,姜宗福. 光纤激光器阵列相干合成中的位相探测与校正方法研究[J]. 物理学报, 2006, 55(1): 184~187
- 4 Zhu Mengzhen, Huang Changchun, Cheng Yong *et al.*. Mutual injection phase-locked study of fiber laser with two output ports [J]. *Chinese J. Lasers*, 2010, **37**(12): 2964~2968 朱孟真,黄长春,程 勇等. 双端输出光纤激光器互注入锁相研

究[J]. 中国激光, 2010, **37**(12): 2964~2968

- 5 V. Gapontsev, D. Gapontsev, N. Platonov *et al.*. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness [C]. Munich: Proceedings of the Conference on Lasers and Electro-Optics, IEEE, 2005, 508
- 6 IPG Photonics. IPG Potonics successfully tests world's first 10 kilowatt single-mode production laser [EB]. http://www.ipgphotonics.com/newsproduct.htm
- 7 D. J. Digiovanni, A. J. Stentz. Tapered fiber bundles for coupling light and out of cladding-pumped fiber devices[P]. U. S. Patent, 5864644, 1999
- 8 F. Gonthier, L. Martineau, F. Seguin *et al.*. Optical coupler comprising multimode fibers and method of making the same [P]. U. S. Patent, 7046875, 2006
- 9 Wang Dazheng, Wang Yonggang, Liu Suping *et al.*. New reflecting side-pumped method of double-clad fiber laser by micro-prism[J]. *Acta Optica Sinica*, 2009, **29**(4): 974~979 王大拯,王勇刚,刘素平等.双包层光纤激光器微棱镜反射式侧 面耦合的新技术[J]. 光学学报,2009, **29**(4): 974~979
- 10 Chen Zilun, Hou Jing, Jiang Zongfu. Estimation of maximum output power of double clad fiber laser[J]. *High Power Laser and Particle Beams*, 2007, **19**(4): 577~580 陈子伦,侯 静,姜宗福.双包层光纤激光器最大输出功率的估 算[J]. 强激光与粒子束, 2007, **19**(4): 577~580
- 11 Wang Yong. Heat dissipation in kilowatt fiber power amplifiers [J]. IEEE J. Quantum Electron., 2004, 40(6): 731~740
- 12 Li Pingxue, Zhu Chen, Zou Shuxhen *et al.*. Theoretical and experimental investigation of thermal effects in a high power Yb³⁺-doped double-clad fiber laser[J]. Opt. Laser Technol., 2008, **40**(2): 360~364
- 13 A. B. Grudinin, D. N. Payne, P. W. Turner et al. Multi-fiber arrangements for high power fiber lasers and amplifiers[P]. U. S. Patent, 6826335B1, 2004
- 14 Liu Lisong, Peng Jian, Yao Lei *et al.*. Research on the fabrication and coupling characteristic of symmetrical twin-core fiber[J]. *Chinese J. Lasers*, 2010, **37**(3): 752~756 刘利松, 彭 健, 姚 磊等. 对称双芯光纤的研制及其耦合特性研究[J]. 中国激光, 2010, **37**(3): 752~756
- 15 Zheng Jingjing, Zheng Kai, Peng Jian *et al.*. Analysis of splicing and splicing fusion coupling efficiency between single-core fiber and dual-core fiber [J]. Acta Optica Sinica, 2010, **30** (9): 2529~2535

郑晶晶,郑 凯,彭 健等.单芯光纤与双芯光纤的对接和熔接 耦合效率分析[J].光学学报,2010,**30**(9):2529~2535

- 16 A. Ghatak, K. Thyagaraian. An Introduction to Fiber Optics [M]. Cambridge: Cambridge University Press, 1998, 545
- 17 A. E. Siegman. Propagation modes in gain-guided optical fibers
 [J]. J. Opt. Soc. Am. A, 2003, 20(8): 1617~1618
- 18 Wang Xiangru, Xiong Caidong, Luo Juanyan. Coupling coefficients evaluation of a directional coupler using gain guided and index antiguided fibers[J]. Opt. Commun., 2009, 282(3): 382~386
- 19 I. Kelson, A. A. Hardy. Strongly pumped fiber lasers [J]. IEEE J. Quantum Electron., 1998, 34(9): 1570~1577
- 20 D. C. Brown, H. J. Hoffman. Thermal, stress, and thermooptic effects in high average power double-clad silica fiber lasers
 [J]. IEEE J. Quantum Electron., 2001, 37(2): 207~217
- 21 I. Kelson, A. Hardy. Optimization of strongly pumped fiber lasers[J]. J. Lightwave Technol., 1999, 17(5): 891~897
- 22 M. E. Innocenzi, H. T. Yura, C. L. Fincher. Thermal modeling of continuous-wave end-pumped solid-state lasers [J]. *Appl. Phys. Lett.*, 1990, **56**(19): 1831~1833